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ABSTRACT
New generations of ground vehicles are required to perform tasks with an

increased level of autonomy. Autonomous navigation and Artificial Intelligence
on the edge are growing fields that require more sensors and more computational
power to perform these missions. Furthermore, new sensors in the market produce
better quality data at higher rates while new processors can increase substantially
the computational power. Therefore, near-future ground vehicles will be equipped
with large number of sensors that will produce data at rates that has not been
seen before, while at the same time, data processing power will be significantly
increased. This new scenario of advanced ground vehicles applications and increase
in data amount and processing power, has brought new challenges with it: low
determinism, excessive power needs, data losses and large response latency. In
this article, a novel approach to on-board artificial intelligence (AI) is presented
that is based on state-of-the-art academic research of the well known technique of
data pipeline. Algorithm pipelining has seen a resurgence in the high performance
computing work due its low power use and high throughput capabilities. The
approach presented here provides a very sophisticated threading model combination
of pipeline and parallelization techniques applied to deep neural networks (DNN),
making these type of AI applications much more efficient and reliable. This new
approach has been validated with several DNN models and different computer
architectures. The results show that the data processing rate and power saving
of the applications increase substantially with respect to standard AI solutions,
enabling real AI on harsh environments like ground vehicle deployment.
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1. INTRODUCTION
It is common ground that embedded systems

have evolved hugely in the last decade [1]. New
generations of autonomous embedded systems are
required to perform more and faster on-board data
processing. Sensors, embedded processors, and
hardware in general have hugely evolved in the
last decade, equipping embedded systems with
large number of sensors that will produce data
at rates that has not been seen before while
simultaneously having computing power capable of
large data processing [2], [3]. This evolution in
the hardware together with these new challenging
AI requirement suppose an enormous challenge for
on-board software engineering.

1.1 AI onboard Ground Vehicles
AI is used in ground vehicles for a variety of

purposes, including:

• Autonomous navigation: AI can help military
ground vehicles navigate autonomously, using
sensors and algorithms to detect and avoid
obstacles and make real-time decisions about
where to go.

• Target detection and identification: AI can
be used to identify potential targets on the
battlefield, including enemy troops, vehicles,
and equipment, by analyzing data from sensors
and other sources.

• Predictive maintenance: AI can be used to
monitor the health and performance of military
ground vehicles, predicting when parts may
fail and scheduling maintenance before a
breakdown occurs.

• Predictive maintenance: AI can be used to
monitor the health and performance of military
ground vehicles, predicting when parts may

fail and scheduling maintenance before a
breakdown occurs.

• Driver assistance: AI can assist human drivers
in controlling the vehicle, providing real-time
feedback and alerts to help prevent accidents
and improve situational awareness.

• Intelligence gathering: AI can be used to
process and analyze data from a variety
of sources, including cameras, sensors, and
communication systems, to gather intelligence
about enemy movements and activities.

Therefore, AI can help ground vehicles operate
more efficiently, effectively, and safely on the
battlefield, giving soldiers a strategic advantage in
combat situations.

The rest of the article has the following structure:
In Section 2, we first present an introduction to the
AI inference along with recent trends for accelerating
it in section 2.1. We discuss the traditional
approach used for improving performance using
parallel processing in section 2.2. In section 3, we
introduce the concepts that form the backbone of the
main contribution of this paper - namely the data
pipelining using lock-free approach to AI inference.
Section 3.1 introduces the concepts of lock-free
algorithms. Section 3.2 introduces the pipelining
approach and section 4 describes how these two
ideas are combined to develop the novel AI inference
engine. Section 5 describes the experimental setup
used to test the inference engine and validate the
performance benefits of this new approach.

2 INFERENCE IN ARTIFICIAL INTELLIGENCE
There are several components to artificial

intelligence (Fig. 1). First, there is the training and
design of the model based on the data to be analyzed.
This activity is usually carried out by data scientists
for a specific field of interest. Once the model is
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designed, trained and validated to perform suitably
on test data, it is deployed to the target computer for
real-time execution. This is what is called inference.
Inference consists of two parts, the trained model and
the AI inference engine to execute the model. The
focus of this research has been solely on the inference
engine software algorithms.

Data 
preparation

AI Model 
Design and 

Training
Simulation 
and Testing

Deployment 
and 

Inference

Figure 1: AI main components

2.1 Trends in Artificial Intelligence
inference acceleration

The most common operation in AI inference
by far is matrix multiplications. These operations
are constantly repeated for each input data to
the AI model. In recent years, there has been
a substantial development in this area with both
industry and academia progressing steadily in this
field. While the current trend is to focus on hardware
acceleration like Graphic Processing Units (GPU)
[4] and Field-programmable gate array (FGPA) [5],
these techniques are currently not broadly available
to the Space industry due to radiation issues and
excessive energy consumption for the former, and
programming costs for the latter. The use of CPU
for inference, however, has been also undergoing
an important evolution taking advantage of modern
Floating processing unit (FPU) connected to the CPU
[6]. CPUs are widely used in Space due to large
Space heritage and also ease of programming and
use. Several AI inferences engines are available
for CPU+FPU setups. The work presented here
will show the results of extensive research in
building a new AI inference that both reduces power
consumption and also increases data throughput.

2.2 Parallel processing applied to Artificial
Intelligence inference

Within the field of inference engines for
CPU+FPU, the focus for performance optimisation
has been on matrix multiplication parallelisation [7],
[8]. This process consists in splitting the operations
required for a matrix multiplication into smaller to be
executed by several threads in parallel. Fig. 2 shows
an example of this type of process, where rows from
the left-hand matrix and columns from the right-hand
matrix are individual operations to be executed by
different threads.

Figure 2: Parallel matrix multiplication

3 LOCK-FREE APPROACH TO AI
INFERENCE
The work presented here is a based on a two

dimensional threading model that combines two
types of threads: lock-free pipelines and traditional
parallelization techniques. The rest of this section
explains both threading approaches and how they are
combined to produce a novel high performance AI
inference engine.

3.1 Lock-free parallel data processing for
embedded systems

The work presented here is based on the concept
of lock-free ring buffers [9]. Lock-free ring buffers
are high performance concurrency framework based
on CAS (Compare And Swap). They have drawn
huge interest from industry due to its efficiency.
For example, companies like LMAX have developed
software using these techniques[10] that can, for
instance, handle up to six million orders per second
[11].
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Lock-free programming in general, and ring
buffers in particular, are traditionally written in
Java. The reason for this is the presence of
the Java Garbage Collector, which makes the very
complex development of lock-free programming
much more accessible to developers than it is in other
languages. Moreover, the popularity of books like
“Java Concurrency in Practice” [12], made a big
impact in the Java development community. With
the arrival of C++11 and smart pointers [13], it
was possible to partially port ring buffers to C++,
given the resemblance to Java Garbage Collector
programming style.

3.1.1 Lock-free event loop

Based on this pattern and combining it with
the new smart pointers in C++11 and wrapping
it within a publisher subscriber pattern [14], we
developed a simple application public interface
(API), miniaturizing the almighty LMAX disruptor
for embedded systems as presented in Fig. 3.

Figure 3: Generic ring buffer.

We limited the offered functionality of the
disruptor to two main approaches. The first is the
sensor multiplexer as in Fig. 4, which is a single
producer, multiple consumer solution. Mainly used
for vision navigation robotics and drone applications,

this pattern is out of the scope of this article. The
second, which we developed, is an eventloop (Fig.
5) loosely based on this development for financial
systems. The eventloop presented here is lock-free,
high performance and with a degree of determinism
that has not been seen before in embedded systems
[15].

Figure 4: Sensor multiplexer - Special case of the
generic ring buffer with only 1 producer and multiple
consumers.

Figure 5: Lock-free eventloop - Special case of
the generic ring buffer with multiple producers and
single consumer.

The eventloop is a multiple producer, single
consumer ring buffer which allows a fine degree of
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control over memory usage. The lock-free design
provides a low latency solution to process huge
amounts of data. Applications like AI inference deal
with large amounts of data and this lock-free design
can be very powerful in improving the performance
of inference engines.

3.2 Data pipelining
The theoretical advantage of the traditional

parallelisation approach is its minimal latency [7].
However, there is an emerging alternative approach
to parallelisation, which is based in the concept
of pipelines [16]. This approach works in a
similar manner to an assembly line, where each
part of this line corresponds to a complete matrix
multiplication. Fig. 6 shows this approach as
applied to matrix multiplication as compared to the
traditional parallelisation. The pipelining approach
is particularly well suited for AI deep neural
networks (DNN), since DNNs feature multiple
”layers” of computationally intensive calculations.
The main advantage that makes pipeline a reliable
approach to data processing in resources constraint
environment, like Space on-board computers, is
its higher throughput: pipelining can enable a
substantial increase in throughput with respect to
traditional parallelisation [17].

In the context of AI inference, pipelining consists
of identifying separate groups of layers of the DNNs
and treating them as separate ”blocks” of a pipeline.
Data being processed by one ”block” need not be
related to the data processed on another ”block”.
When one block has finished processing its data, it
sends it to the next block and is ready to accept new
data for processing. Decoupling the various blocks
allows us to then investigate and optimize each block
separately based on the computational needs of that
block.

4 THE NOVEL THREADING MODEL
Combining the concept of pipelining above with

lock-free algorithms [18], the authors have developed

a new pipelining approach that can process data at
2 to 8 times increased data rate, while at the same
time reduce power consumption up to 75%. This new
pipelining algorithm consists of three main elements:

• Use of lock-free ring-buffers to connect the
matrix multiplication operations.

• Use of FPU vectorisation to accelerate the
matrix multiplications

• One ring-buffer per thread, meaning that each
matrix multiplication happens in one thread.

This novel approach can be seen in Fig. 7.
Careful configuration of the eventloops allows
allocating different memory and CPU resources to
each layer of the DNN, which can help optimize
the performance of the AI inference for latency,
throughput or CPU utilization.

It must be noted that the underlying calculations
for each layer in the DNN are not changed. As the
only changes made are to the data transfer between
layers, the inference accuracy of the original DNN
is maintained. The accuracy of the DNN models
was tested by comparing the output of Klepsydra AI
against output obtained from using other inference
engines (such as Tensorflow lite [19]) for the same
input data.

4.1 Threading model optimisation
DNNs used for different applications can have

widely differing architectures and the performance
can vary based on number and type of layers used in
the DNN. Additionally, the optimization constraints
for performance may change based on the type of
application for which the DNN is being used. For
example, DNNs used for navigation may have hard
constraints on latency and throughput. On the other
hand, reducing CPU usage may be more important
for non-critical applications like filtering low quality
images captured by a camera before storage.
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Figure 6: Pipelining vs parallelisation: Each operation in the pipeline only consumes part of the available
resources. In parallelisation, each operation is parallelised to optimally use all available resources

Figure 7: Novel proposed pipelining approach combining the pipelining with lock-free ring-buffers. Each
operation runs in one thread, and the operations themselves use vectorised multiplications
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Configuring eventloops for the application then
becomes an important step of this threading model.
For very deep DNNs, we may be able to group
multiple resource-light layers to share the ring-buffer
to avoid creating too many threads. The number of
CPU cores available for FPU vectorization and the
number of cores available for eventloop threads are
two parameters that can affect the performance of AI
inference.

The ring buffer can use an object pool
which also affects the memory usage of the
process. Additionally this may affect the maximum
throughput of the system. Fewer eventloops allow
us to dedicate more resources to parallelization
operations to reduce latency at the cost of higher
CPU usage. On the other hand, more eventloops
allow better pipelining improving throughput.

We have developed an autotuning tool which
tests the target DNN with different eventloop
configurations and finds the best configuration for
each optimization constraint - low latency, high
throughput, low CPU and low memory requirements.

The autotuning tool has a web interface (see
Fig. 8), allowing the user to select an AI model
to test. The tool allows the user to select a
memory pool size, the number of cores to be
reserved for pipelining and the number of threads for
parallelization operations. The user is expected to
provide a range of frequencies at which new data will
be input to the model, to evaluate the performance
characteristics of the AI model.

The autotuning tool generates all possible valid
combinations of configurations and tests these at the
various input frequencies on the target device. In the
example shown in Fig. 8, we have up to 2 cores for
pipelining, and 2 threads for parallelization - giving
us 4 possible combinations for each input frequency.
Additionally, we can test with and without an object
pool, giving us 4 additional combinations. When
the user provides the range of frequencies at which
new input data is fed to the DNN, the autotuning
tool will test these 8 configurations for each of the

frequencies.

Figure 8: Autotuning tool configuration

Figure 9: Best configurations for a sample Alexnet
on 2-core Intel machine

The tool measures CPU usage, latency timings,
RAM usage and finds the best configuration for each
performance constraint. A sample result of best
configurations for different criteria for an Alexnet is

A Low Power And High Perf..., Pablo Ghiglino, PhD, et al. Page 7 of 12



Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

shown in Fig. 9. The performance of the inference
engine with each configuration is shown in Fig. 10.

These results of the autotuning tool allow us
to compare the performance of an AI model under
different criteria and choose the best threading model
according to the final desired application.

Figure 10: Sample performance for Alexnet on
2-core Intel machine for optimized configurations

5 THE EXPERIMENTAL SETUP
5.1 Overview

The performance results presented here were
obtained during the European Space Agency (ESA)
contract Klepsydra AI Technology Evaluation For
Space Use (KATESU) [20].

The activity was aimed at porting the Klepsydra
technology on a hardware target representative of
on-board spacecraft, demonstrate it and evaluate
its performance. Specifically, the objective of this
activity was to port Klepsydra AI software into the
specified on-board computer and specified operating
system. Moreover, the software was tested and
validated using first, standard models like Alexnet
and MobileNet, and then followed by validation on
AI models provided by ESA (namely CME [21]
and U-Net[22] for Cloud detection). Validation
consisted of comparing prediction obtained using
Klepsydra AI software on given models for test
data with the predictions obtained using existing
market solutions. Finally, a performance benchmark
and analysis was carried out testing ESA’s DNNs

in the above-mentioned setup and the results
were compared with existing market solutions like
TensorFlow Lite (TFL).

5.2 The technical setup
The presented solution was tested in the

following setups:

5.2.1 Processors

• QorIQ® Layerscape LS1046A Multicore
Processor. OS: Yocto Linux (Jethro). The
reason for selecting this processor is that there
exists a Space grade Radiation Tolerant version
that is offered by Teledyne e2v[23].

• ZedBoard Zynq-7000 ARM/FPGA SoC
Development Board; OS: Petalinux 2021.2

Docker containerisation was used in both
processors. The setup elements are shown in Fig. 11.

QorIQ® Layerscape LS1046A

Klepsydra AI Container

ZedBoard

Klepsydra AI Container

PetaLinux

Klepsydra AI Container

Figure 11: Processor setup for inference on
LS1046A and Zedboard

5.2.2 AI Models

The Klepsydra AI framework, used for this
study, is compatible with a variety of architectures
including AI models for object detection and
semantic segmentation. Performance benchmarks
are presented in this article for the following models.

• Coronal Mass Ejections (CME) detection
model[21] provided by ESA[24].

• U-Net for cloud detection [22]
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The model for CME detection is a sequential model
with convolutional networks, similar to Alexnet,
whereas the U-Net has a graph architecture with skip
connections. The CME detection model predicts a
single floating point value showing whether there
are Coronal Mass Ejections based on image data.
The U-Net performs segmentation on image data
and predicts an image highlighting zones covered
by clouds. We chose these two models as they
have different architectures and hence, different
computational needs, and this allows us to highlight
the different use cases for which the inference engine
can be used.

5.3 DNN deployment steps
Since Klepsydra is fully compatible with the

current ’de facto’ standards for ML model, the
deployment process consists of the following
standard steps:

• Training of the model

• Quantization (if required)

• Final deployment in ONNX format [25]

For this activity, we obtained pretrained models
in floating point and 8-bit quantized format. The
Alexnet and Mobilenet models were run on synthetic
data, while the CME and U-Net were run on real
test data. The CME model was tested on test data
provided by ESA [24], while the U-Net was tested on
the data from the Cloud 95 dataset [26]. The LS1046
was used to test the full and quantized models both,
whereas the Zedboard was used to test only the
quantized models.

5.4 Performance results
5.4.1 LS1046

In order to simulate usage in real time, the models
were evaluated by providing new input data at regular
intervals. CPU usage was measured as normalized

to the frequency of new input data, to account for
differences in model complexities and throughput.

Performance results on the LS1046 for the CME
model show a substantial increase in performance
with a 4-fold increase in throughput, 30% CPU
reduction and 66% reduction in latency with respect
to TensorFlow Lite inference tool[19]. The quantized
version of the CME model also showed a 4-fold
increase in throughput, 25% CPU reduction and
4-fold reduction in latency. These results are
summarized in Fig. 12 and Fig. 13.

Figure 12: LS1046 Results, CME model

Figure 13: LS1046 Results, CME Quantized model
model

For the U-Net model, we obtained 3-fold
increase in throughput, 20% CPU reduction and 50%
reduction in latency with respect to TensorFlow Lite.
The results are shown in Fig. 14.
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Figure 14: LS1046 Results, U-Net model

5.4.2 Zedboard

Only the quantized model was tested on the
Zedboard. In case of the CME model, we obtained
a 3-fold increase in throughput, 40% CPU reduction
and 50% reduction in latency. The results are shown
in Fig. 15.

Figure 15: Zedboard Results, CME Quantized model
model

6 CONCLUSIONS AND FUTURE WORK
Lock-free programming techniques, together

with pipelining can bring three main benefits to
on-board processing: Faster data processing, reduced
power consumption on-board, and determinism. The
benefits for ground vehicle system are clear for those
areas needing large data processing: Autonomous
navigation and intelligence gathering. The approach
for AI inference described in this papers permits
using deep neural networks for on-board processing

without incurring significant resource costs, and
without the necessity of upgrading rugged computer
systems to expensive hardware.

The main areas of future research work for the
short term are: adding FreeRTOS support, NVIDIA
GPU Support, and extending this approach to FPGA.
Moreover, for the mid-term plan, we plan to add
support for Reinforcement Learning, support for
running inference on RTEMS v5 and also perform
Space pre-qualification of the inference engine.
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